導(dǎo)航:全球石油化工網(wǎng) >> 資訊頻道 >> 技術(shù)裝備

    DeepFlex公司開發(fā)出海工纖維強(qiáng)化軟管(FFRP)

    [加入收藏][字號(hào): ] [時(shí)間:2009-06-05 E&P 關(guān)注度:0]
    摘要:簡介:DeepFlex公司開發(fā)出一種纖維強(qiáng)化軟管,該軟管完全非金屬制造,高分子聚合襯里,包裹有強(qiáng)化玻璃和環(huán)氧樹脂保護(hù)層,具有高強(qiáng)度的抗海水腐蝕性,還可以抵抗高強(qiáng)度化學(xué)物質(zhì)比如H2S和CO2等的侵蝕;輕便靈活,性價(jià)比高;同時(shí)符合API 17J...
    簡介:DeepFlex公司開發(fā)出一種纖維強(qiáng)化軟管,該軟管完全非金屬制造,高分子聚合襯里,包裹有強(qiáng)化玻璃和環(huán)氧樹脂保護(hù)層,具有高強(qiáng)度的抗海水腐蝕性,還可以抵抗高強(qiáng)度化學(xué)物質(zhì)比如H2S和CO2等的侵蝕;輕便靈活,性價(jià)比高;同時(shí)符合API 17J和17B 標(biāo)準(zhǔn)。適用于海洋工程作業(yè)中。


    Flexible pipes are often used as dynamic risers that connect seabed flowlines to floating production facilities. They are used as seabed flowlines where they are more cost-effective to install than rigid steel pipe and in projects where the flowline may be recovered for reuse after a short field life. Flexible pipes also are used as static and dynamic jumpers at the sea floor, on hybrid risers, or as surface jumpers on deck.

    DeepFlex has developed a new option for unbonded flexible pipe that does not use metallic reinforcement. Unlike metal pipe, the DeepFlex Flexible Fiber Reinforced Pipe (FFRP) is highly resistant to the corrosive properties of saltwater and other more aggressive chemicals such as the high H2S and CO2 concentrations being encountered more frequently in harsh offshore environments.

    The FFRP connects wellheads, risers, flowlines, export pipelines, and well testing and intervention vessels to enable offshore oil and gas production in the most challenging environments.

    Benefitting from innovation

    The FFRP is constructed from extruded polymeric layers that are reinforced with unbonded laminated glass-fiber tape stacks. The pipe layers are unbonded to enable independent movement and provide greater flexibility. Laminating the tape stacks improves structural integrity.

    This new generation of lightweight, flexible, non-metallic, unbonded pipes has been developed for use in both shallow and deepwater subsea applications. The pipes are the first of their kind, offering large savings in weight, as much as 60%less than traditional steel flexible pipe. This lighter weight pipe enables the use of a larger spectrum of installation vessels, which results in total installed costs that are often significantly less when compared to traditional steel flexible pipe.Additionally, the FFRP delivers a higher strength-to-weight ratio and a higher tensile strength per kilogram than steel, resulting in lower top tension requirements during installation for any water depth.

    The construction of this new flexible pipe eliminates metallic reinforcements, removing the associated corrosion concerns with seawater. The FFRP composite construction also improves the U-value of the pipe (the rate of heat loss or gain through a material). Thermal performance of FFRP is significantly better than that of the traditional metal-reinforced unbonded flexible pipes designed for the same internal and external pressure requirements.

    Construction

    The patented construction process for the FFRP produces continuous long lengths. It involves two basic processes: extruding thermoplastic sheaths and winding unbonded composite reinforcements. API 17 type thermoplastic materials (HDPE, PA-11 or PA-12, PVDF) are used in the extruded sheaths. The type of material is dependent on the operating temperatures and fluids running through the pipe.

    The FFRP has an internal polymer liner that serves as the smooth chemically resistant conduit for the hydrocarbons. It is surrounded by several layers of composite reinforcements made of E glass/epoxy composites. Depending upon the design pressure, there are often two layers of pressure reinforcement that are torque-balanced and separated from each other by anti-wear tapes for dynamic service.

    Each layer of composite reinforcement is made of multistart stacks of custom-engineered, pre-cured unidirectional composite tapes that are bonded together in what the company refers to as a “stack.”

    Fit for purpose

    DeepFlex’s internal testing and qualification program is designed to meet all applicable API 17J and 17B standards for metallic flexible pipe. The FFRP has consistently exceeded the current industry operating parameters in crush and collapse testing, meaning the product is ideal for operating in deepwater installations and operations. Industry-recognized independent verification agents (IVAs) monitor both customer-specific testing and qualification requirements as well as DeepFlex’s new technology qualification program. These programs result in type approval for the FFRP.

    Application

    FFRP is a critical part of an engineered solution designed to meet requirements specific to the project, client, and installation. In a recent project undertaken by DeepFlex, the company designed, delivered, and replaced 1,608 ft (490 m) of traditional steel flexible pipe being used as an oil export riser for South Africa’s PetroSA.

    The flexible steel line, installed 10 years prior, was connected to an offloading buoy in 394 ft (120 m) of water in the Oribi field near the coast of the Cape of Good Hope. Routine diver inspection and subsequent detailed examination discovered that the existing traditional steel flexible pipe was in a “failure stage” due to advanced abrasion of the pipe jacket and subsequent corrosion of the metal armoring.

    The riser needed to be replaced quickly and efficiently to avoid a costly field shutdown. PetroSA requested completion within a very short time period, and contractor J. Ray McDermott S.A. contacted DeepFlex for a solution. The FFRP was selected because it met the needs and timeline of both PetroSA and J. Ray McDermott.

    FFRP was an ideal product for replacing the existing steel flexible pipe because of its non-corrosive properties, higher fatigue resistance, and lower weight. Installing the FFRP allowed production to be maintained with minimal shut-in time.

    DeepFlex was able to deliver this pipe in less than three months from the time of order, allowing PetroSA to replace the riser system in a fraction of the time that would have been required if another riser solution had been selected. 

    楊寶劍 是振威(全球)石油網(wǎng)的高級(jí)技術(shù)編輯,在石油技術(shù)資訊行業(yè)有八年的學(xué)識(shí)和經(jīng)驗(yàn)。他源源不斷地提供石油行業(yè)全球最新的技術(shù)創(chuàng)新、研發(fā)成果、現(xiàn)場應(yīng)用情況等信息。如果你對(duì)該項(xiàng)新技術(shù)有任何的疑問,或者對(duì)“新技術(shù)新產(chǎn)品”未來的內(nèi)容有任何問題或建議,請(qǐng)聯(lián)系楊寶劍編輯 +86 10-58236512 Email:allenyo@zhenweiexpo.com 歡迎與行業(yè)互動(dòng)!
    關(guān)鍵字: DeepFlex 海工 纖維強(qiáng)化 軟管 FFRP 
    關(guān)于我們 | 會(huì)員服務(wù) | 電子樣本 | 郵件營銷 | 網(wǎng)站地圖 | 誠聘英才 | 意見反饋
    Copyright @ 2011 CIPPE.NET Inc All Rights Reserved 全球石油化工網(wǎng) 版權(quán)所有 京ICP證080561號(hào)
    亚洲精品线在线观看| 日本精品中文字幕| 亚洲av日韩综合一区在线观看| 欧美精品大香伊蕉在人线| 国产精品视频yuojizz| 337p日本欧洲亚洲大胆精品555588| 久久精品国产96精品亚洲| 一夲道无码人妻精品一区二区| 精品国精品国产自在久国产应用男| 日韩精品成人亚洲专区| 日韩精品一区二区三区中文精品| 国产三级精品三级男人的天堂| 国产麻豆精品在线观看| 午夜精品福利在线观看| 亚洲精品女同中文字幕| 免费精品国产日韩热久久| 精品福利视频导航| 国产精品乳摇在线播放| 国产精品免费观看| 在线综合亚洲中文精品| 国产精品久久久久影院色| 精品爆乳一区二区三区无码av| 1024你懂的国产精品| 亚洲蜜芽在线精品一区| 久久久无码精品亚洲日韩京东传媒 | 久久精品日韩av无码| 日韩精品久久久久久免费| 日韩成人无码影院| 久久精品无码一区二区日韩AV| 日韩一区二区三区精品| 亚洲av日韩av综合| 日韩经典精品无码一区| 国产精品国产三级在线高清观看 | 国产成人精品一区二三区在线观看| 精品人妻无码专区在中文字幕| 日韩在线视频一区| 亚洲äv永久无码精品天堂久久 | 视频久re精品在线观看| 日韩精品一区二区三区在线观看l| 国产精品免费视频播放器| 国产精品亚洲精品日韩已满|