導(dǎo)航:全球石油化工網(wǎng) >> 資訊頻道 >> 技術(shù)裝備

    GLCC Technology Boosts Production from Takula Filed ,Offshore Angola

    [加入收藏][字號: ] [時間:2011-07-26 offshore energy today 關(guān)注度:0]
    摘要: GLCC Technology For decades, the Takula Field offshore Angola has been one of Chevrons best producers...





    GLCC Technology 

    For decades, the Takula Field offshore Angola has been one of Chevron’s best producers in southern Africa. But through the innovative modeling and implementation of a gas liquid cylindrical cyclone (GLCC), those results got even better: Oil production rates increased by approximately 2,100 barrels of oil per day (bopd).

        Wells across Takula send a flow of gas, oil, and water through three subsea pipelines to the platform more than a mile away. Despite high production rates, the flow became sluggish when gas and liquids moved in a chaotic mixing motion through the horizontal pipeline section on the sea bottom and up to the platform.

        This flow dissipated energy and caused high backpressure on the wells, decreasing overall production potential.

        “GLCC is a cost-effective way to maximize production where opportunities exist by reduction of system backpressure,” said Gabriel Ivaba, Takula area superintendent.

    Simulation Models Uncover Alternative 

        During 2006-07, Chevron engineers began developing simulation models to explore adding new subsea pipelines to reduce the backpressure in our fields in southern Africa.

        “Modeling the interaction between well performance and pipeline hydraulics was pivotal because it helped us identify that separating the gas and liquids would decrease backpressure in the Takula Field,” said Barend Uys, process engineer in the Facilities Engineering Optimization group. “Our models allowed us to do the math for many different scenarios and predict the production increase for each option.”

        The group collaborated with Chevron Energy Technology Company (ETC) to evaluate alternatives to adding pipeline, such as installing a conventional separator or a GLCC.

        A GLCC consists of a vertical pipe with a tangential inlet and outlets for gas and liquid. Flow is conditioned at the inlet to help spur the breakout of gas from the fluid. When fluid enters the vessel, it swirls into a cyclone, causing the liquids to move outward and down in the cylinder, while the gas travels inward and upward.

        The smooth liquid-only or gas-only flow incurs less pressure drop and translates into a higher rate of production. Of the 20 well jackets in the Takula Field, the Takula Delta jacket’s conditions are ideal for the GLCC because of the high production, multiple pipelines, high backpressure, and optimum ratio of gas to liquids.

        “It was really significant to identify the GLCC as the solution because we didn’t have to build any new pipelines or change anything with the existing pipelines, which is quite complicated and costly,” said Jimmie Riesenberg, an ETC engineering manager. “It’s much easier to build something on the surface than to lay another pipeline in the sea.”

        A secondary benefit of the GLCC is that less pipeline resistance translates to lower pressure all the way down the wellbore, making it easier to inject gas at greater depths.

        “The deeper we can inject, the more effective the gaslift system becomes at lifting oil out of the wellbore, ultimately leading to a greater capture of barrels,”Uys said.

    The GLCC Advantages


        The GLCC is also more compact, lightweight and less costly than conventional gravity-based separators. And because it was invented by Chevron in the early 1990s, the company had strong in-house design capabilities.

        “It’s very suitable for a remote unmanned facility due to its small footprint, and it has significantly lower operating weight for deck extension installation,” said Pannawat Nilkitsaranont, project engineer with Takula facilities engineering.

        The biggest challenge was getting the equipment to Angola and coordinating offshore construction logistics. Also, it was a challenge to install the deck extension for the GLCC unit because there wasn’t a platform crane or heavy lifting barge support at the site. Instead, two special lifting frames equipped with 10-ton winches were built on top of the well jacket to hoist and set the prefabricated deck extension into position.

        The project was achieved with an incident-free safety record after approximately 52,000 construction hours between onshore and offshore activities. Use of the GLCC has resulted in a safer operation with less hydrocarbon inventory and a lighter lift.

        Initial screening indicates that one or two additional GLCC opportunities may exist in Takula.

        “We are reviewing other opportunities to apply this technology and increase oil production,” said Scot Buell, base business manager and petroleum engineering consultant for Cabinda Gulf Oil Company. “The experience gained should make the next GLCC faster and less expensive to implement.”

    關(guān)鍵字: GLCC Offshore Chevron Takula Bopd 
    關(guān)于我們 | 會員服務(wù) | 電子樣本 | 郵件營銷 | 網(wǎng)站地圖 | 誠聘英才 | 意見反饋
    Copyright @ 2011 CIPPE.NET Inc All Rights Reserved 全球石油化工網(wǎng) 版權(quán)所有 京ICP證080561號
    国产精品亚洲а∨无码播放麻豆| 91精品国产综合久久久久| 日韩精品福利在线| 精品久久中文网址| 国产精品美女久久福利网站| 91精品国产高清| 久久国产精品张柏芝| 亚洲精品无码不卡在线播HE | 午夜精品视频在线观看| 中文成人无字幕乱码精品区| 精品久久久久久国产牛牛app | 99精品高清视频一区二区| 亚洲电影日韩精品 | 亚洲精品国产美女久久久| jizz国产精品网站| 香港黄页精品视频在线| 亚洲日韩图片专区第1页| 日韩精品一区二区三区视频| 在线精品自拍亚洲第一区| 青青青国产精品视频| 精品国产这么小也不放过| 亚洲性色精品一区二区在线| 国产精品亚洲四区在线观看| 精品久久无码中文字幕| 亚洲精品国产免费| 亚洲精品视频免费看| 91精品国产91久久久久久青草| 91精品国产免费久久国语蜜臀| 嫩草伊人久久精品少妇AV| 久久久久成人精品一区二区 | 无码人妻精品中文字幕| 亚洲AV无码成人精品区天堂| 亚洲国产精品特色大片观看完整版| 国产精品亚洲成在人线| 精品国产亚洲一区二区三区| 国产精品亚洲精品日韩已满| 国产精品99精品久久免费| 久久国产精品2020免费m3u8| 亚洲精品线在线观看| 久久精品国产亚洲AV嫖农村妇女| 久久精品无码专区免费东京热|